Computing Model and Operational Status

Gustaaf Brooijmans

Run II Computing Review, September 14th, 2004

- Status in a nutshell
- Data Flow: processing steps
- Remote farms: MC and reprocessing
- (Important) loose ends: databases, disk and tape, operations
- Hardware tools: status and plans
- Software tools: status and plans
- Organization
- Conclusions

Current Status in a Nutshell

- Reconstruction is keeping up with datataking
- Datahandling is performing very well
- GEANT Monte-Carlo production has reached 1M events/week, all remote
- Reprocessing data remotely
- Analysis CPU power is adequate expanding
- Databases are satisfying most of our needs
- Globally, we're doing OK

Data Flow

- Data acquisition (raw data in evpack format)
 - Currently limited to ~50 Hz L3 accept rate, but hardware limitation will be increased to ~100 Hz this Fall (with further increase possible at minimal cost: ~\$5k/100 Hz)
- Reconstruction (DST/tmb in evpack format)
- Fixing (tmb in evpack format)
 - Correct for problems discovered after reconstruction, rerun high-level algorithms
- Skimming (tmb in evpack format)
 - Event streaming based on reconstructed physics objects
- Analysis (in: tmb or root; out: root histograms)

Reconstruction

Concern

p14.06.00 Reco Times

Laurent will talk about this ...

Fixing and Skimming

- Both performed centrally by the Common Samples Group (CSG)
 - Some problems in data quality are only (can only be) discovered after a significant sample has been processed
 - Some can be fixed offline, only require re-running of high-level algorithms (i.e. fast) -> "Fixing"
- Skimming is event selection based on physics object
 - Basic samples for all analyses

Analysis Format

- Output format from reco/skims is "tmb" (evpack)
- Physics plots are made using root
- Different groups have been using different approaches to this
 - No intermediate format (i.e. work directly on tmb)
 - Painful due to long linking times, recently introduced dynamic linking to improve this significantly
 - Intermediate root tree produced by physics groups or individuals which gets distilled further by end-user
 - Various incarnations of this -> strain on resources (cpu convert all data, disk store it, people run the jobs)

Common Root Format

- Committee formed to evaluate options
 - They recommend creating a general root tree containing the full thumbnail info
 - Would be centrally produced
- Working group now formed to implement this (start from existing "TMBTree")
 - Expect them to finish by the end of the year
- Expect 2 types of analysis then: tmb- and common root tree-based

Monte-Carlo

 All MC is produced offsite, with the exception of small samples produced by individual

Have reached 1 Mevts/week

(conversion to JIM in March now, only small perturbations)

37 Mevts in FY04

Remote Data Processing

- When make significant improvements to the reconstruction, want to reprocess old data
 - For p14 reprocessing (Fall '03), 100 M events
 were processed from DST offsite (out of ~500 M)
 - For p17 reprocessing (anticipated in Winter '04),
 expect to process bulk of data remotely (total volume ~1 B events), this time from raw (!)
 - See Mike's talk
- These represent important steps towards our future computing model

Databases

• Calibration:

- With p17, all systems (except muon) get calibration from DB during reconstruction
 - Cache for Fermilab farm (600 d0reco processes)
 - Proxy servers for remote reconstruction

Luminosity

- Going from ASCII files to DB, migration complete by end of CY04
- Trigger
 - Complexity reflects complexity of trigger system and its continuous development, help very much needed and on the way (from CD)

Disk and Tape

- Tape access has been a bottleneck a few times in the past year, mainly due to inadequate SAM disk cache
 - Current system's robustness "saved" us so far
 - Help on the way:
 - Adding 10 LTOII drives, will probably activate 2nd arm in ADIC robot
 - Very significant expansion of disk resources, both
 SAM cache and project space for final samples
 - Starting tests of dCache

Operations

- Very successful "SAM shifts" model
 - Remote collaborators take these instead of control room shifts (like physics monitoring shifts)
 - Form first line of defense
 - Can answer questions, restart some services
 - Work underway to give them better diagnostics (currently much is done by "grep" on logfiles)
- Maintenance tasks that require downtime done on "first Tuesday of the month"
 - People are prepared
 - Downtime rarely exceeds expectation

Current Cluster Usage

- Reco farm for reconstruction (+ fixing)
- Remote farms for MC production and data reprocessing
- CAB (batch analysis farm) for processing of farm output
 - Fixing and skimming
 - Direct analysis
 - Group-organized translation to root format
 - CPU-intensive analysis jobs
- Clued0 (desktop cluster) for interactive work, user analysis (has batch, SAM access, releases, ...)
- D0mino (Origin 2k): trying to find out what remains...

Statistics

Millions of Events Consumed per Month on All Stations Year ending 09-Sep-2004 (D0 Production)

Cluster Evolution

- Continuously upgrading reco farm and CAB to keep up with increasing dataset size
- Clued0 has presumably reached steady size, machines get replaced by institutions
 - Number of sysadmins is permanently low,
 requires some twisting of arms
- D0mino retirement planned for end of CY04, will make it "read-only" at end of October
 - Interactive linux cluster at FCC ready for users

Software Evolution

- Experiment (and computing) is in operations phase
 - Unstable situation however
 - Expect significant increase in instantaneous luminosity (x3)
 - Simultaneous with migration of resources to the LHC (both equipment and personpower)
 - We are therefore evolving our model
 - Make all our computing tasks GRID-compatible
 - Reduce maintenance load on tools

We're Not Alone ...

- CD is pursuing similar path
 - Run II Department
 - Planned consolidation of farms
- LHC (and other) experiments are looking at our experience, evaluating some of our tools, with development now common projects:
 - SAMGrid
 - Runjob

Risk: now our colleagues have to follow through!

Getting There

- First step was p14 remote processing
 - Successful, a lot learned
- Next step: p17
 - Process from raw data, requires DB access
 - Increased use of GRID tools, reduce manual intervention
- After that, "export" other common tasks (like fixing), then finally user jobs

Tool Interfaces

- Currently using different tools for different purposes:
 - (mc_)runjob for remote production and user MC production
 - d0tools: (popular) user interface for job submission
 - SAM(Grid) for data handling, accounting
 - d0rte for specification of run-time needs
 - OS compatibility to run on different linux flavors
- Integration of these important step towards "simple" GRID job submission

Organization

Conclusion

- Computing is *not* a bottleneck in data analysis, want to keep it that way
- Potential issues being addressed
 - Short term:
 - Disk space expansion, increase in analysis cpu, data format consolidation, reconstruction cpu consumption
 - Long term:
 - Common set of tools for production and analysis, pursue overall GRID-compatibility, develop tools in collaboration with others
- Globally doing rather well